SECA Core Technology

Fossil Energy Fuel Cell Program

Wayne Surdoval, SECA Coordinator June 3, 2003

National Energy Technology Laboratory
Office of Fossil Energy

SECA CORE TECHNOLOGY PROGRAM

W. Nernst "Electrical Glow-Light" U.S. Patent 623,811 April 25, 1899

Fuel H₂O + CO₂ H₂ + CO CO + H2O - H2 + CO2 Heat Permeable Anode Impermeable | Electrolyte O₂ + 4e⁻→ 2O⁼ Permeable Cathode Depleted O₂ Air Oxidant Heat

Solid Oxide Fuel Cell

SECA Program Structure

Industry Input

Program Management

Project Management

Research Topics

Industry Integration Teams

Needs

Technology Transfer

Core Technology Program

Core Technology Program Powering All Ships

- Materials
- Modeling and simulation
- Fuel processing

- Power electronics
- Controls and diagnostics
- Manufacturing

Intellectual Property

Cornerstone of the Alliance

Non-Exclusive License

- CTP Industry Teams
- Open for 1 year after issue of a U.S. patent
- Ready market of potential licensees
- Best designs vs. highest bidder
- Dispute Resolution Mechanism
- Promotes Collaboration Limits Duplication
- Pilot program; reevaluate after 2 years

Solid Oxide Fuel Cell

The Vision: Fuel Cells in 2010

Low Cost/High Volume \$400/kW > 50,000 units/yr

Different Approaches!

Team	Design	Manufacturing
Cummins- SOFCo	 Electrolyte supported 850 C Thermally matched materials Seal-less stack 	Tape castingScreen printingCo-sintering
Delphi- Battelle	 Anode supported 750 C Ultra compact Rapid transient capability 	Tape castingScreen printing2-stage sintering
General Electric Company	 Anode supported 750 C Hybrid compatible Internal reforming 	 Tape calendering 2-stage sintering
Siemens Westinghouse	 Cathode supported 800 C Redesigned tubular Seal-less stack 	Stack extrusionPlasma spray

Two New Different Approaches!

Team	Design	Manufacturing
Acumentrics Corporation	 Anode supported microtube 750 C Thermally matched materials Robust & rapid start-up 	ExtrusionDip processingSpray deposition
FuelCell Energy, Inc.	Anode supported< 700 CLow cost metals	 Tape casting Screen printing Co-sintering Electrostatic deposition

SOFC Materials Costs

SOFC Component	Material Cost (\$/kW)
Common Materials (excluding interconnects)	
Ni/ZrO ₂ anode (500 microns)	11.67
ZrO ₂ /Y ₂ O ₃ electrolyte (10 microns)	0.40
LaMnO ₃ cathode (50 microns)	2.30
ss End Plates (1.25 centimeters)	0.70
Subtotal Common Materials	15.07
Ceramic Interconnect (2.5 millimeters)	137.50
Subtotal Ceramic Interconnect & Common Materia	ls 152.57
50% Contingency	76.28
Total Material Costs Using Ceramic Interconnects	228.85
Metallic Interconnect (2.5 millimeters)	6.67
Subtotal Metallic Interconnect & Common Materia	
50% Contingency	10.87
Total Material Costs Using Metallic Interconnects	32.61

Current Priorities: Core Technology Program

1	Gas seals	Glass and compressive seals
1	Interconnect	Modifying components in alloysCoatings
2	Modeling	Models with electrochemistryStructural characterization
2	Cathode performance	Micro structure optimizationMixed conductionInterface modification
2	Anode/ fuel processing	 Metal oxides with interface modification Catalyst surface modification Characterize thermodynamics/kinetics
3	Power electronics	Direct DC to AC conversionDC to DC design for fuel cells
4	Material cost	Lower cost precursor processingCost model methodology

SECA Budget (\$M)

Core Technology Program FY 2003

Stack Technology – Seals & Cross Cutting

PNNL – Seals, Modeling and Analysis, Cathodes, Anodes, Interconnects, Fuel Processing

LBNL – Metallic supported cell structure, Cathode **Current Flow**

interface modification

ANL – Metallic supported cell structure, Interconnects, **Fuel Processing**

Materials - Interconnects

Develop low temperature interconnect suitable for SOFC

- U. of Pittsburgh
- Ceramatec
- Southwest Research Institute
- PNNL
- ANL

Modeling and Simulation

Structural, performance, and optimization design tools

- PNNL
- NETL
- ORNL
- U. of Florida
- Georgia Tech
- TIAX

Image courtesy of NETL

Image courtesy of PNNL

Image courtesy of Delphi

Image courtesy of Delphi

Materials - Cathodes

Cathode performance – 2x improvement

- U. of Washington
- U. of Missouri Rolla
- U. of Utah
- Functional Coating, LLC
- Georgia Tech
- PNNL

Images courtesy of NexTech

Fuel Processing and Anode Tolerance

Carbon and sulfur resistant anodes

- Northwestern
- GTI

Carbon and sulfur resistant reforming catalysts

- LANL
- ANL
- NETL

Tubular cPox Reformer

Image courtesy of Delphi

Power Electronics / Controls & Diagnostics

Interaction between fuel cell, power conditioning system and application loads

U. of Illinois

DC-DC / DC-AC converters

- Texas A&M
- Virginia Polytechnic Institute

High Temperature Sensors

NexTech Materials

Manufacturing

Low cost and consistent precursor materials

- NexTech Materials
- U. of Utah

Image courtesy of Honeywell